Letter to the Editor Neutrino emission due to proton pairing in neutron stars
نویسندگان
چکیده
We calculate the neutrino energy emission rate due to singlet-state pairing of protons in the neutron star cores taking into account the relativistic correction to the non-relativistic rate. The non-relativistic rate is numerically small, and the relativistic correction appears to be about 10–50 times larger. It plays thus the leading role, reducing great difference between the neutrino emissions due to pairing of protons and neutrons. The results are important for simulations of neutron star cooling.
منابع مشابه
Neutrino emission due to proton pairing in neutron stars
We calculate the neutrino energy emission rate due to singlet-state pairing of protons in the neutron star cores taking into account the relativistic correction to the non-relativistic rate. The non-relativistic rate is numerically small, and the relativistic correction appears to be about 10 – 50 times larger. It plays thus the leading role, reducing great difference between the neutrino emiss...
متن کاملEnhanced cooling of neutron stars via Cooper-pairing neutrino emission
We simulate cooling of superfluid neutron stars with nucleon cores where direct Urca process is forbidden. We adopt density dependent critical temperatures Tcp(ρ) and Tcn(ρ) of singlet-state proton and triplet-state neutron pairing in a stellar core and consider a strong proton pairing (with maximum T cp >∼ 5 × 10 9 K) and a moderate neutron pairing (T cn ∼ 6× 10 8 K). When the internal stellar...
متن کاملNeutrino emission due to Cooper pairing of nucleons in cooling neutron stars
The neutrino energy emission rate due to formation of Cooper pairs of neutrons and protons in the superfluid cores of neutron stars is studied. The cases of singlet-state pairing with isotropic superfluid gap and triplet-state pairing with anisotropic gap are analysed. The neutrino emission due to the singlet-state pairing of protons is found to be greatly suppressed with respect to the cases o...
متن کاملCooling of Akmal-Pandharipande-Ravenhall neutron star models
We study the cooling of superfluid neutron stars whose cores consist of nucleon matter with the Akmal-Pandharipande-Ravenhall equation of state. This equation of state opens the powerful direct Urca process of neutrino emission in the interior of most massive neutron stars. Extending our previous studies (Gusakov et al. 2004a, Kaminker et al. 2005), we employ phenomenological density-dependent ...
متن کاملThe cooling of Akmal–Pandharipande–Ravenhall neutron star models
We study the cooling of superfluid neutron stars whose cores consist of nucleon matter with the Akmal–Pandharipande–Ravenhall (APR) equation of state. This equation of state opens the powerful direct Urca process of neutrino emission in the interior of most massive neutron stars. Extending our previous recent studies (Papers I and II), we employ phenomenological density-dependent critical tempe...
متن کامل